Pierwszy w Polsce komputer kwantowy stanie w Poznaniu

Już w przyszłym roku polskie instytucje naukowe, badawcze oraz prywatne firmy będą mogły rozpocząć korzystanie z mocy obliczeniowej pierwszego nad Wisłą komputera kwantowego. To maszyna, która podniesie nasze możliwości obliczeniowe – a mowa o sumie możliwości wszystkich najsilniejszych komputerów w kraju – o kilkanaście razy. To także rzyszłość technologiczna ludzkości, w tym również sztucznej inteligencji.
Komputer kwantowy IBM
Komputer kwantowy IBM / Flickr @ Pierre Metivier

Komputery kwantowe działają według zasad mechaniki kwantowej, posługując się cząstkami elementarnymi znajdującymi w superpozycji, czyli w wielu miejscach i stanach naraz. Brzmi jak magia? I tak wygląda dla przeciętnego człowieka, jeżeli nie pochylił się nad najciekawszą, a jednocześnie najbardziej tajemniczą dziedziną fizyki. Choć sama mechanika kwantowa jest obecna w naszym języku i skojarzeniach, jeden z jej twórców fizyk Richard Feynman zwykł mawiać: „Jeśli sądzisz, że rozumiesz mechanikę kwantową, to nie rozumiesz mechaniki kwantowej”.

 Czytaj także: Europejska integracja czy niemiecka dominacja? Jak Polska podporządkowuje się Berlinowi

Kot Schroedingera i foton w wielu miejscach

Kiedy Edwin Schroedinger, inny fizyk zajmujący się cząstkami elementarnymi, po latach pracy doszedł do wniosku, że do czasu zaistnienia obserwatora zjawiska wszystkie możliwości są w każdej chwili aktualne, zaproponował kolegom oraz studentom eksperyment myślowy. Chodziło o uśmiercenie (lub nie) kota zamkniętego w pudełku, który ginął (lub nie), w zależności od tego, czy uwolniony foton, jedna z najmniejszych cząstek elementarnych, uderzy lub nie uderzy w dźwignię, która pośrednio spowoduje śmierć kota, wyliczenia pokazywały, że foton uderzy i nie uderzy jednocześnie. A efektem tego stało się umieszczenie kota w superpozycji kwantowej – krótko mówiąc, do otwarcia pudełka i wykonania obserwacji kot był jednocześnie żywy i martwy. I jeżeli wyda wam się to oczywiste, bo przecież dopiero otwierając pudełko, zobaczymy, co się z kotem stało, ponieważ za jego śmierć odpowiadał foton, dla którego superpozycja jest stanem naturalnym, los kota ważył się dopiero w momencie otwierania pudełka. Zupełnie jakby przez chwilę lokalny czas kota płynął do tyłu po to, żeby złapać moment, w którym foton „wybierał” drogę do dźwigni, lub taką, która dźwignię pomija. Tak czy inaczej kot w pudełku rzeczywiście znajduje się w dwóch stanach – jest żywy i martwy jednocześnie.

Zdumiewające zachowanie fotonów (również elektronów i innych cząstek elementarnych) zostało później udowodnione w jak najbardziej namacalnych eksperymentach, kiedy strzelano jednym fotonem w ścianę, w której znajdowały się dwa otwory. Kiedy nie było obserwatora, foton przelatywał przez jeden i drugi otwór jednocześnie, tworząc dwa ślady na światłoczułej powierzchni za otworami (podczas kiedy przy obserwatorze zawsze przelatywał tylko przez jeden otwór). 

Wykorzystanie takich właściwości mikroświata powoduje, że mając do dyspozycji więcej niż jeden foton, możemy prowadzić nie jedno obliczenie w czasie, ale ich niemalże nieskończoną ilość, bo oprócz wartości 0 i 1, które są reprezentacją jednego bitu, mamy do dyspozycji całą masę wartości pośrednich również przyjmowanych w tym czasie przez taką cząsteczkę. Jednostką informacji – niosącą jednak znacznie więcej danych – staje się wówczas nie bit, a kubit umożliwiający równoległe wykonywanie wielu obliczeń. 

Komputery kwantowe oparte na tych właściwościach naszego mikroświata – trudne do zaakceptowania dla przeciętnego człowieka – mają jednak swoje wymagania. Muszą być w pełni izolowane od otoczenia. Chodzi o pozbawienie obserwatora możliwości kontaktu (nawet pośredniego, przez urządzenia) z komputerem, bo wówczas stan kwantowy wyliczeń sprowadza się do jednego, a nie miliarda wyników, zaś wart miliardy dolarów sprzęt zamienia się w zwykłego peceta. Dzieje się to w ciągu ułamka sekundy i zauważamy to dopiero po wynikach wypluwanych przez procesor. 

To najsłabsza strona komputerów kwantowych, bo żeby umożliwić im istnienie i funkcjonowanie w oparciu o funkcje falowe, trzeba je idealnie izolować od otoczenia – to kwestia zmian temperatury, światła, obecności ludzi, a nawet... sprzętu nagrywającego. Aby przeciwdziałać dekoherencji, stosuje się kody kwantowej korekcji błędów, dynamiczną kontrolę rozprzęgnięcia (zmniejszenie sprzężenia pomiędzy systemem a środowiskiem), kontrolę sprzężenia zwrotnego oraz podprzestrzenie bez dekoherencji.

Czytaj także: „Młot na marksizm”: Drag queen trafią do polskich szkół

Supermaszyna na poznańskiej ziemi 

Istniejące dzisiaj na świecie komputery kwantowe są w taki sposób izolowane od świata, żeby nie mieć z nim absolutnie żadnego kontaktu. Taki ma być również pierwszy polski komputer, który staje właśnie w Poznańskim Centrum Superkomputeorowo-Sieciowym. EuroQCS-Poland, jak nazywa się budowana właśnie jednostka, będzie częścią rozbudowywanej europejskiej sieci komputerów kwantowych. 

Jak uważają naukowcy, dzięki komputerowi będzie można rozwijać ważne aplikacje dla przemysłu, nauki oraz społeczeństwa. Dzięki nowemu komputerowi kwantowemu rozszerzą się znacznie również możliwości europejskiej infrastruktury superkomputerowej. Komputer kwantowy, oparty na technologii spułapkowanych jonów, zostanie zintegrowany z klasycznym systemem superkomputerowym, co ma wzmocnić i rozwinąć istniejące hybrydowe rozwiązania, które za pomocą technologii kwantowych wzbogacą infrastrukturę superkomputerów.

Hybrydowa instalacja ma wspierać dotychczasowe i nowe działania w takim zakresie, jak kwantowa optymalizacja, chemia kwantowa, kwantowe badania materiałowe czy kwantowe uczenie maszynowe. Jej zintegrowanie z istniejącą w Polsce infrastrukturą i siecią naukową Pionier pozwoli zaś na zdalny dostęp do możliwości obliczeniowych EuroQCS-Poland dla innych nadwiślańskich ośrodków naukowych, ale również zajmujących się rozwojem nowych, w tym kosmicznych, technologii.

Łotysze pomogą w zamian za dostęp

Partnerami budowy pierwszego polskiego komputera kwantowego zostały Centrum Fizyki Teoretycznej PAN, Creotech Instruments S.A. oraz... Uniwersytet Łotewski, którego naukowcy również będą mogli korzystać z możliwości obliczeniowych komputera. Trzy z dziesięciu najsilniejszych komputerów kwantowych świata znajdują się w Europie. To fiński LUMI, włoski  Leonardo i hiszpański MareNostrum 5 . Czas pokaże, czy i kiedy dołączy do nich polski EuroQCS-Poland.
 


 

POLECANE
Pociąg utknął na trasie. Minister reaguje z ostatniej chwili
Pociąg utknął na trasie. Minister reaguje

Pociąg IC Olsztyn Główny - Kraków utknął w okolicach wsi Dobrzyń po tym jak uderzył w zwisające nad torami drzewo – przekazał w czwartek rzecznik warmińsko-mazurskich strażaków Grzegorz Różański. W pociągu przebywa 41 pasażerów. Ruch na trasie Działdowo-Olsztyn jest wstrzymany do północy.

Komunikat dla mieszkańców Poznania z ostatniej chwili
Komunikat dla mieszkańców Poznania

Od czwartku 1 stycznia nocne autobusy komunikacji miejskiej w Poznaniu będą jeździć z większą częstotliwością. Zarząd Transportu Miejskiego poinformował, że kursy we wszystkie dni tygodnia będą realizowane tak, jak do tej pory były realizowane kursy w noce z piątku na sobotę.

Ta gmina zmieniła nazwę. Mieli dość pomyłek z ostatniej chwili
Ta gmina zmieniła nazwę. Mieli dość pomyłek

Gmina wiejska Nowe Miasto Lubawskie od nowego roku zmieniła nazwę na gmina Bratian. Lokalny samorząd liczy, że poprawi to jej rozpoznawalność i wzmocni poczucie tożsamości mieszkańców.

Koszmarny sylwester w Szwajcarii. Są ofiary z ostatniej chwili
Koszmarny sylwester w Szwajcarii. Są ofiary

Co najmniej 10 osób zginęło, a 10 zostało rannych w noc sylwestrową na skutek eksplozji w kurorcie narciarskim Crans-Montana w południowej Szwajcarii – poinformowała policja, cytowana przez stację SkyNews. Jak podały media, przyczyną wybuchu mogło być użycie materiałów pirotechnicznych.

Zabójstwo taksówkarza w Giżycku. Szokujące ustalenia z ostatniej chwili
Zabójstwo taksówkarza w Giżycku. Szokujące ustalenia

78-letni taksówkarz został zamordowany w noc sylwestrową w Giżycku w woj. warmińsko-mazurskim – informuje w czwartek rano RMF FM.

Pilny komunikat dla kierowców. Wszystkie drogi krajowe są przejezdne z ostatniej chwili
Pilny komunikat dla kierowców. Wszystkie drogi krajowe są przejezdne

W czwartek rano wszystkie drogi krajowe są przejezdne – poinformowała Generalna Dyrekcja Dróg Krajowych i Autostrad. Nocą na drogach pracowało ponad 1,3 tys. jednostek sprzętu do zimowego utrzymania.

Karol Nawrocki: Po pierwsze Polska, po pierwsze Polacy wideo
Karol Nawrocki: Po pierwsze Polska, po pierwsze Polacy

„Wypowiadam te słowa z poczuciem wielkiego zaszczytu i wdzięczności, ale i odpowiedzialności – bo ten urząd nie jest nagrodą, jest przede wszystkim zobowiązaniem” - mówił prezydent Karol Nawrocki.

Jan Krzysztof Ardanowski: Żądałem i żądam skierowania sprawy do sądu tylko u nas
Jan Krzysztof Ardanowski: Żądałem i żądam skierowania sprawy do sądu

„Prokuratorzy od praktycznie 6 lat prowadzą śledztwo, które wcześniej prowadziło je Centralne Biuro Antykorupcyjne. Dla mnie cała sprawa ma cel polityczny, mianowicie Kamiński i Wąsik wymyślili nieistniejącą aferę po to, by zamknąć mi usta, bym nie wypowiadał się w sprawach politycznych, a tym bardziej, bym nie wyrażał się krytycznie o polityce Prawa i Sprawiedliwości, a może i prezesa Kaczyńskiego” - mówi portalowi Tysol.pl Jan Krzysztof Ardanowski, były minister rolnictwa.

Akt oskarżenia przeciwko działaczowi Ruchu Obrony Granic Robertowi B. z ostatniej chwili
Akt oskarżenia przeciwko działaczowi Ruchu Obrony Granic Robertowi B.

Prokurator skierował w środę do sądu akt oskarżenia przeciwko działaczowi Ruchu Obrony Granic Robertowi B., któremu zarzucił cztery przestępstwa, w tym znieważenie funkcjonariuszy Straży Granicznej i Żandarmerii Wojskowej – podała w środę Prokuratura Okręgowa w Gorzowie Wielkopolskim.

Pociąg „Mazury” utknął w Nidzicy. Oblodzone drzewa runęły na linię trakcyjną z ostatniej chwili
Pociąg „Mazury” utknął w Nidzicy. Oblodzone drzewa runęły na linię trakcyjną

Zerwana sieć trakcyjna i unieruchomiony skład PKP Intercity. Pasażerowie pociągu „Mazury” zostali ewakuowani, a ruch kolejowy na ważnej trasie wstrzymano bez podania terminu wznowienia.

REKLAMA

Pierwszy w Polsce komputer kwantowy stanie w Poznaniu

Już w przyszłym roku polskie instytucje naukowe, badawcze oraz prywatne firmy będą mogły rozpocząć korzystanie z mocy obliczeniowej pierwszego nad Wisłą komputera kwantowego. To maszyna, która podniesie nasze możliwości obliczeniowe – a mowa o sumie możliwości wszystkich najsilniejszych komputerów w kraju – o kilkanaście razy. To także rzyszłość technologiczna ludzkości, w tym również sztucznej inteligencji.
Komputer kwantowy IBM
Komputer kwantowy IBM / Flickr @ Pierre Metivier

Komputery kwantowe działają według zasad mechaniki kwantowej, posługując się cząstkami elementarnymi znajdującymi w superpozycji, czyli w wielu miejscach i stanach naraz. Brzmi jak magia? I tak wygląda dla przeciętnego człowieka, jeżeli nie pochylił się nad najciekawszą, a jednocześnie najbardziej tajemniczą dziedziną fizyki. Choć sama mechanika kwantowa jest obecna w naszym języku i skojarzeniach, jeden z jej twórców fizyk Richard Feynman zwykł mawiać: „Jeśli sądzisz, że rozumiesz mechanikę kwantową, to nie rozumiesz mechaniki kwantowej”.

 Czytaj także: Europejska integracja czy niemiecka dominacja? Jak Polska podporządkowuje się Berlinowi

Kot Schroedingera i foton w wielu miejscach

Kiedy Edwin Schroedinger, inny fizyk zajmujący się cząstkami elementarnymi, po latach pracy doszedł do wniosku, że do czasu zaistnienia obserwatora zjawiska wszystkie możliwości są w każdej chwili aktualne, zaproponował kolegom oraz studentom eksperyment myślowy. Chodziło o uśmiercenie (lub nie) kota zamkniętego w pudełku, który ginął (lub nie), w zależności od tego, czy uwolniony foton, jedna z najmniejszych cząstek elementarnych, uderzy lub nie uderzy w dźwignię, która pośrednio spowoduje śmierć kota, wyliczenia pokazywały, że foton uderzy i nie uderzy jednocześnie. A efektem tego stało się umieszczenie kota w superpozycji kwantowej – krótko mówiąc, do otwarcia pudełka i wykonania obserwacji kot był jednocześnie żywy i martwy. I jeżeli wyda wam się to oczywiste, bo przecież dopiero otwierając pudełko, zobaczymy, co się z kotem stało, ponieważ za jego śmierć odpowiadał foton, dla którego superpozycja jest stanem naturalnym, los kota ważył się dopiero w momencie otwierania pudełka. Zupełnie jakby przez chwilę lokalny czas kota płynął do tyłu po to, żeby złapać moment, w którym foton „wybierał” drogę do dźwigni, lub taką, która dźwignię pomija. Tak czy inaczej kot w pudełku rzeczywiście znajduje się w dwóch stanach – jest żywy i martwy jednocześnie.

Zdumiewające zachowanie fotonów (również elektronów i innych cząstek elementarnych) zostało później udowodnione w jak najbardziej namacalnych eksperymentach, kiedy strzelano jednym fotonem w ścianę, w której znajdowały się dwa otwory. Kiedy nie było obserwatora, foton przelatywał przez jeden i drugi otwór jednocześnie, tworząc dwa ślady na światłoczułej powierzchni za otworami (podczas kiedy przy obserwatorze zawsze przelatywał tylko przez jeden otwór). 

Wykorzystanie takich właściwości mikroświata powoduje, że mając do dyspozycji więcej niż jeden foton, możemy prowadzić nie jedno obliczenie w czasie, ale ich niemalże nieskończoną ilość, bo oprócz wartości 0 i 1, które są reprezentacją jednego bitu, mamy do dyspozycji całą masę wartości pośrednich również przyjmowanych w tym czasie przez taką cząsteczkę. Jednostką informacji – niosącą jednak znacznie więcej danych – staje się wówczas nie bit, a kubit umożliwiający równoległe wykonywanie wielu obliczeń. 

Komputery kwantowe oparte na tych właściwościach naszego mikroświata – trudne do zaakceptowania dla przeciętnego człowieka – mają jednak swoje wymagania. Muszą być w pełni izolowane od otoczenia. Chodzi o pozbawienie obserwatora możliwości kontaktu (nawet pośredniego, przez urządzenia) z komputerem, bo wówczas stan kwantowy wyliczeń sprowadza się do jednego, a nie miliarda wyników, zaś wart miliardy dolarów sprzęt zamienia się w zwykłego peceta. Dzieje się to w ciągu ułamka sekundy i zauważamy to dopiero po wynikach wypluwanych przez procesor. 

To najsłabsza strona komputerów kwantowych, bo żeby umożliwić im istnienie i funkcjonowanie w oparciu o funkcje falowe, trzeba je idealnie izolować od otoczenia – to kwestia zmian temperatury, światła, obecności ludzi, a nawet... sprzętu nagrywającego. Aby przeciwdziałać dekoherencji, stosuje się kody kwantowej korekcji błędów, dynamiczną kontrolę rozprzęgnięcia (zmniejszenie sprzężenia pomiędzy systemem a środowiskiem), kontrolę sprzężenia zwrotnego oraz podprzestrzenie bez dekoherencji.

Czytaj także: „Młot na marksizm”: Drag queen trafią do polskich szkół

Supermaszyna na poznańskiej ziemi 

Istniejące dzisiaj na świecie komputery kwantowe są w taki sposób izolowane od świata, żeby nie mieć z nim absolutnie żadnego kontaktu. Taki ma być również pierwszy polski komputer, który staje właśnie w Poznańskim Centrum Superkomputeorowo-Sieciowym. EuroQCS-Poland, jak nazywa się budowana właśnie jednostka, będzie częścią rozbudowywanej europejskiej sieci komputerów kwantowych. 

Jak uważają naukowcy, dzięki komputerowi będzie można rozwijać ważne aplikacje dla przemysłu, nauki oraz społeczeństwa. Dzięki nowemu komputerowi kwantowemu rozszerzą się znacznie również możliwości europejskiej infrastruktury superkomputerowej. Komputer kwantowy, oparty na technologii spułapkowanych jonów, zostanie zintegrowany z klasycznym systemem superkomputerowym, co ma wzmocnić i rozwinąć istniejące hybrydowe rozwiązania, które za pomocą technologii kwantowych wzbogacą infrastrukturę superkomputerów.

Hybrydowa instalacja ma wspierać dotychczasowe i nowe działania w takim zakresie, jak kwantowa optymalizacja, chemia kwantowa, kwantowe badania materiałowe czy kwantowe uczenie maszynowe. Jej zintegrowanie z istniejącą w Polsce infrastrukturą i siecią naukową Pionier pozwoli zaś na zdalny dostęp do możliwości obliczeniowych EuroQCS-Poland dla innych nadwiślańskich ośrodków naukowych, ale również zajmujących się rozwojem nowych, w tym kosmicznych, technologii.

Łotysze pomogą w zamian za dostęp

Partnerami budowy pierwszego polskiego komputera kwantowego zostały Centrum Fizyki Teoretycznej PAN, Creotech Instruments S.A. oraz... Uniwersytet Łotewski, którego naukowcy również będą mogli korzystać z możliwości obliczeniowych komputera. Trzy z dziesięciu najsilniejszych komputerów kwantowych świata znajdują się w Europie. To fiński LUMI, włoski  Leonardo i hiszpański MareNostrum 5 . Czas pokaże, czy i kiedy dołączy do nich polski EuroQCS-Poland.
 



 

Polecane