Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.


 

POLECANE
Obrońcy dobrych pedofilów ogłosili koniec działalności tylko u nas
Obrońcy "dobrych pedofilów" ogłosili koniec działalności

Jedna z najbardziej znanych organizacji normalizujących pedofilię ogłosiła koniec swojej działalności. Jej działacze nie widzą już sensu w dalszych działaniach: nastroje na świecie zmieniły się tak, że nikt nie chce już słuchać o rzekomej potrzebie destygmatyzacji niebezpiecznych parafilii! 

Javeliny dla Polski. USA zatwierdziły sprzedaż uzbrojenia z ostatniej chwili
Javeliny dla Polski. USA zatwierdziły sprzedaż uzbrojenia

Kolejne Javeliny dla Wojska Polskiego - podkreślił wicepremier, szef MON Władysław Kosiniak-Kamysz informując o udzieleniu zgody przez Departament Stanu na sprzedaż pocisków Javelin dla Polski.

Norwegia wyśle do Polski kolejny kontyngent F-35 Wiadomości
Norwegia wyśle do Polski kolejny kontyngent F-35

Norweskie Siły Zbrojne potwierdziły w czwartek PAP, że przygotowują wysłanie do Polski kolejnego kontyngentu samolotów bojowych. Misja ma rozpocząć się jesienią.

Jeden z najbliższych doradców Putina podał się do dymisji gorące
Jeden z najbliższych doradców Putina podał się do dymisji

Rzecznik Kremla Dmitrij Pieskow potwierdził w czwartek informacje rosyjskich i zagranicznych mediów o rezygnacji przez Dmitrija Kozaka, jednego z najbliższych doradców Władimira Putina, ze stanowiska zastępcy szefa administracji (kancelarii) prezydenta Rosji.

Skandal w Krokowej. Tablica pamiątkowa dla oficerów Wehrmachtu Wiadomości
Skandal w Krokowej. Tablica pamiątkowa dla oficerów Wehrmachtu

W Krokowej pojawiła się tablica upamiętniająca trzech żołnierzy walczących w armii Hitlera. Sprawa budzi emocje, a jeszcze większe kontrowersje wywołuje film dokumentalny Marii Wiernikowskiej, który ukazał się na Kanale Zero.

Incydent w Nowej Wsi. Dron spadł na teren oczyszczalni ścieków Wiadomości
Incydent w Nowej Wsi. Dron spadł na teren oczyszczalni ścieków

Zdarzenie odnotowano w środę w Nowej Wsi (woj. małopolskie). Na teren miejscowej oczyszczalni ścieków spadł dron. Jak poinformował dzień później Urząd Gminy Skała, urządzenie należało do kategorii rekreacyjnych i służyło „głównie do zabawy i nauki latania”.

Kryminalny hit powraca. Jest data premiery Wiadomości
Kryminalny hit powraca. Jest data premiery

Platforma HBO Max ujawniła datę premiery i teaser trzeciego sezonu popularnego serialu kryminalnego „Odwilż”. Nowe odcinki, realizowane ponownie w Szczecinie, będzie można oglądać od 17 października.

Przyszłość Polski zależy od naszej odporności na wycie tylko u nas
Przyszłość Polski zależy od naszej odporności na wycie

Pisanie o tym, że Polska znajduje się na historycznym zakręcie to truizm. To oczywiste, chyba wszyscy już to widzą. Obiektywnie znaleźliśmy pomiędzy żarnami rosyjskim i niemiecki, z których każde ma swój pomysł na zagospodarowanie polskiej mąki.

Immunitet Małgorzaty Manowskiej. Jest decyzja Trybunału Stanu Wiadomości
Immunitet Małgorzaty Manowskiej. Jest decyzja Trybunału Stanu

Postępowanie Trybunału Stanu ws. immunitetu I prezes SN Małgorzaty Manowskiej zostało umorzone - przekazał PAP Piotr Sak. Sędzia TS - który był w trzyosobowym składzie Trybunału podejmującym decyzję - poinformował, że postępowanie umorzono „z dwóch podstaw: brak kworum i brak uprawnionego oskarżyciela".

Nowe stanowisko w ukraińskim wojsku. Zełenski podpisał ustawę Wiadomości
Nowe stanowisko w ukraińskim wojsku. Zełenski podpisał ustawę

Prezydent Ukrainy Wołodymyr Zełenski podpisał w czwartek ustawę o rzeczniku praw żołnierzy – przekazano na stronie parlamentu. Rzecznik będzie zajmować się ochroną praw żołnierzy, rezerwistów, osób podlegających obowiązkowi wojskowemu, członków ochotniczych formacji i jednostek policyjnych.

REKLAMA

Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.



 

Polecane
Emerytury
Stażowe