Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.


Oceń artykuł
Wczytuję ocenę...

 

POLECANE
Tadeusz Płużański: „Giń, polska świnio” Wiadomości
Tadeusz Płużański: „Giń, polska świnio”

1 grudnia 1942 r. w Łodzi, na wyodrębnionym terenie Litzmannstadt Ghetto przy ul. Przemysłowej, Niemcy utworzyli obóz dla polskich dzieci i młodzieży. Do stycznia 1945 r. męczyli tu ok. 3 tysiące z nich, w wieku od dwóch do 16 lat.

9 grudnia odbędzie się 1 Kongres Blisko Rodziny Wiadomości
9 grudnia odbędzie się 1 Kongres Blisko Rodziny

9 grudnia odbędzie się 1 Kongres Blisko Rodziny. W wydarzeniu można wziąć udział na żywo lub online. Rozpoczęcie o 10.00 w Auli Schumana UKSW w Warszawie. Nieodłączną częścią tej inicjatywy jest publikacja złożona z tekstów dotyczących rodziny. Są to artykuły poruszające między innymi takie tematy jak: wypalenie rodzicielskie, work – life balance, kondycja rodziny we współczesnym świecie. (Fragmenty tekstów zamieszczamy na poniżej).

Jest nowy rating S&P dla Polski z ostatniej chwili
Jest nowy rating S&P dla Polski

Agencja S&P Global Ratings potwierdziła długoterminowy rating Polski w walucie obcej na poziomie "A-" - poinformowała agencja w komunikacie. Perspektywa ratingu pozostała stabilna.

Magdalena Ogórek zamknęła usta hejterom z ostatniej chwili
Magdalena Ogórek zamknęła usta hejterom

Znana dziennikarka TVP Magdalena Ogórek wdała się na Instagramie w potyczkę słowną z jedną z obserwatorek.

Z ostatniej chwili: Wypadek gwiazd TVP [FOTO] z ostatniej chwili
Z ostatniej chwili: Wypadek gwiazd TVP [FOTO]

Para znana z programu TVP „Rolnik szuka żony” miała wypadek. W sieci pojawiło się zdjęcie z karetki pogotowia.

Putin wydał dekret. Zwiększa liczebność armii z ostatniej chwili
Putin wydał dekret. Zwiększa liczebność armii

Dyktator Rosji Władimir Putin wydał w piątek dekret, na mocy którego liczebność żołnierzy w rosyjskich siłach zbrojnych zwiększy się do 1,32 mln; oznacza to wzrost o 170 tys. w porównaniu ze stanem obecnym - poinformowała agencja Interfax-Ukraina za bazą aktów prawnych Kremla.

Znany dziennikarz TVN24 Andrzej Morozowski znowu podpadł silnym razem, którzy zwalniają go z TVN z ostatniej chwili
Znany dziennikarz TVN24 Andrzej Morozowski znowu podpadł "silnym razem", którzy "zwalniają go" z TVN

Andrzej Morozowski, znany dziennikarz TVN24 dopiero co musiał odczytywać n antenie z kartki samokrytykę, po tym jak stwierdził, że PiS nie łamał konstytucji, a już znowu podpadł najbardziej radykalnym zwolennikom Donalda Tuska.

Szydło: Chcą pospłacać swoje długi pieniędzmi innych krajów UE z ostatniej chwili
Szydło: Chcą pospłacać swoje długi pieniędzmi innych krajów UE

"Brukselscy urzędnicy na spółkę z rządami niektórych krajów UE chcą pospłacać swoje długi pieniędzmi innych krajów UE" - napisała na Twitterze [X] była premier, Beata Szydło, europoseł PiS.

Armagedon na południu. W tych regionach Polski nocą spadnie nawet pół metra śniegu z ostatniej chwili
"Armagedon na południu". W tych regionach Polski nocą spadnie nawet pół metra śniegu

Prawdziwy armagedon pogodowy na południu. Nocą z piątku na sobotę oraz w sobotę śnieżyce, oblodzenia dróg, gołoledzie w pasie od Śląska, przez Małopolskę po Lubelszczyznę i Podkarpacie. IMGW wydało ostrzeżenia od pierwszego do trzeciego stopnia.

Skandal w Pałacu Buckingham. Tak żona króla Karola III traktuje Williama i Harry'ego z ostatniej chwili
Skandal w Pałacu Buckingham. Tak żona króla Karola III traktuje Williama i Harry'ego

Wokół Pałacu Buckingham wrze. Brytyjski ekspert i autor nowej książki o rodzinie królewskiej, Omid Scobie opisuje relacje żony króla Karola III - Camilli Parker-Bowles z jego synami księciem Williamem i księciem Harrym.

REKLAMA

Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.



Oceń artykuł
Wczytuję ocenę...

 

Polecane
Emerytury
Stażowe